首页> 外文OA文献 >Violation learning differential evolution-based hp-Adaptive pseudospectral method for trajectory optimization of Space Maneuver Vehicle
【2h】

Violation learning differential evolution-based hp-Adaptive pseudospectral method for trajectory optimization of Space Maneuver Vehicle

机译:基于违背学习微分进化的hp-自适应伪谱方法在空间机动飞行器弹道优化中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The sensitivity of the initial guess in terms of optimizer based on hp-adaptive pseudospectral method for solving Space Maneuver Vehicles (SMV) trajectory optimization problem has long been recognised as a difficult problem. Because of the sensitivity with regard to the initial guess, it may cost the solver a large amount of time to do the Newton iteration and get the optimal solution or even the local optimal solution. In this paper, to provide the optimizer a better initial guess and solve the SMV trajectory optimization problem, an initial guess generator using violation learning deferential evolution algorithm is introduced. A new constraint-handling strategy without using penalty function is presented to modify the fitness values so that the performance of each candidate can be generalized. In addition, a learning strategy is designed to add diversity for the population in order to improve the convergency speed and avoid local optima. Several simulation results are conducted by using the combination algorithm; Simulation results indicated that using limited computational efforts, the method proposed to generate initial guess can have better performance in terms of convergency ability and convergency speed compared with other approaches. By using the initial guess, the combinational method can also enhance the quality of the solution and reduce the number of Newton iteration and computational time. Therefore, The method is potentially feasible for solving the SMV trajectory optimization problem.
机译:长期以来,人们已经认识到,基于基于hp的伪谱方法的优化器来解决空间机动飞行器(SMV)轨迹优化问题的初始猜测的敏感性是一个难题。由于对初始猜测的敏感性,求解器可能会花费大量时间进行牛顿迭代并获得最优解甚至局部最优解。在本文中,为了给优化器提供更好的初始猜测并解决SMV轨迹优化问题,引入了使用违背学习差分进化算法的初始猜测生成器。提出了一种不使用惩罚函数的新约束处理策略来修改适应度值,从而可以概括每个候选者的表现。此外,还设计了一种学习策略,以增加总体的多样性,以提高收敛速度并避免局部最优。使用组合算法进行了一些仿真结果。仿真结果表明,与其他方法相比,所提出的用于生成初始猜测的方法在收敛能力和收敛速度方面具有更好的性能。通过使用初始猜测,组合方法还可以提高解的质量,并减少牛顿迭代的次数和计算时间。因此,该方法对于解决SMV轨迹优化问题可能是可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号